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Key Challenges

• Present paradigm 
– Use “Warm Electronic Box”
– Use traditional electronics
– Use traditional RTG

• New paradigm 
– “No Warm Electronics Box”
– Ultra low power and low noise, low temperature instrument quality 

electronics 
– Mini RTG + low temperature rechargeable batteries for burst power
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Key Challenges

• −180°C temperature
– Can electronics operate at −180°C Yes
– Can we make ultra low power instrumentation quality electronics

TBD 

• Power sources and  energy storage technology
– What are the technology options for powering a science craft
– What are the alternative technologies for low temperature energy 

storage
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Cryogenic Operation of SiGe HBTs
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The Idea: Put Graded Ge Layer into the Base of a Si BJT
Primary Consequences:

• smaller base bandgap increases electron injection   (β )
• field from graded base bandgap decreases base transit time   (fT     )
• base bandgap grading produces higher Early voltage   (VA      )

All kT Factors Are Arranged to Help at Cryo-T!

SiGe HBTs for Cryo-T
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SiGe HBTs at Cryo-T

27C

-230C

dc                                                               ac

SiGe Exhibits Very High Speed 
at Very Low Power!

First Generation SiGe HBT
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Cryo-T Radiation
First 77K Proton Irradiation Experiment in SiGe Technology

- 63 MeV protons at UC Davis
• Radiation Damage Smaller at 77K Than at 300K (great news!)
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X-band LNA Operation at 15 K (Not Yet Optimized!)
• Teff < 20 K (noise T)
• NF < 0.3 dB
• Gain > 20 dB
• dc power < 2 mW

Cryogenic SiGe LNAs

Collaboration with S. Weinreb, Cal Tech

NF = 0.3 dB!

This SiGe LNA is also Rad-Hard!
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Aggressive Cascode X-band SiGe PA
 Current ¼-W SiGe X-band solution (5V): 32 parallel devices
 Can this Pout be achieved with a smaller (20 dBm) PA core?

 Design Cascode PA Using Aggressive VC Bias
Single-stage Cascode PA Schematic:  
(0.12x18um2 HS  0.6x18um2 HB) x8

Power Simulations With Aggressive 
Collector Voltage Bias:  Pout > 24 dBm
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SiGe BV - Extreme Environments
 Both radiation and low T degrade the CB SOA

CB – forced IE measurement 
VCB-crit pre- and post-rad:

[21] C. Zhu et al. "Assessing reliability issues in cryogenically-
operated SiGe HBT’s," IEEE BCTM, pp. 41–44, 2005.

Breakdown voltage across 
temperature:

 CB stability analysis used to examine various pinch-in influences
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Cryogenic Operation of CMOS
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Sub-Threshold Behavior
• First Generation SiGe BiCMOS (0.35 um Leff)
• VT and Subthreshold Swing Increase with Cooling
• Output Drive Improves with Cooling

nFET                                 pFET
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Output Characteristics

• Improved Current Drive With Cooling
• Modest Degradation in Output Conductance

nFET                                pFET
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T Dependence

• VT Increases with Cooling /  S Decreases with Cooling
• gm Increases with Cooling / µ Increases with Cooling 

How About Reliability?
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Device Reliability

• ISUB is a Good Monitoring Parameter for HCE
• After Stress, Id and gm Decrease While VT and S Increase

300 K
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MOSFET L,T Dependence

• Lifetime Decreases with Cooling at Fixed L
• Lifetime Decreases with L at Fixed T (Mitigation Path)
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Remote Electronics Unit

• 5” x 3” x 6.75” = 101 in3

• 11 kg
• 17 Watts 
• -55oC to +125oC

• 1.5” x 1.5” x 0.5” = 1.1 in3 (100x)
• < 1 kg (10x)
• < 2 Watts (10x)
• -180oC to +125oC, rad tolerant

Conceptual integrated REU 
system-on-chip SiGe BiCMOS die

The X-33 
Remote Health 
Unit, circa 1998

The ETDP Remote 
Electronics Unit, circa 2009

Specifications Goals

Analog front 
end die

Digital 
control die

Supports Many Sensor Types:
Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

REU in 
connector 
housing!

Use This REU as a Remote Vehicle Health Monitoring Node

SiGe
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Major Advantages:
• Eliminates Warm Box (size, weight, and power; allows de-centralized architecture)
• Significant Wiring Reduction (weight, reliability, simplifies testing & diagnostics)
• Commonality (easily adapted from one system to the next)

SiGe REU Architecture
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B. J. Blalock, 8/10/10

ETDP

 RSI (CRYO-5a):
• 16-channel monolithic Remote 

Electronics Unit Sensor Interface 
(RSI) ASIC

• 10 mm x 14 mm
• Current I/O estimate 236 I/O

• 139 signal I/O
• 50 ESD
• 40 power I/O
• 7 explicit test I/O

• Top-Level cells:
• UT – (1) 12-bit 16-channel 

Wilkinson ADC
• UARK – (12) Low-speed Channels
• AU – (2) High-speed channels
• GT – (2) Charge-amp channels
• UT – (1) Flying capacitor 6-phase 

clock generator

RSI Chip for REU

CRYO-5A 10x14 mm2
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MISSE-6 ISS Mission

Recent NASA photograph of MISSE-6 after deployment, 
taken by the Space Shuttle Crew

SiGe Circuits !
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Ultra Low Power 
Mixed-Signal Design 
Challenges for Moon

Ben Blalock
Integrated Circuits & Systems Laboratory

The University of Tennessee

November 3, 2010
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Some Perspective…

 Battery life with 1 μA:

From 30 mAh to 600 mAh

>> 600 mAh

With 1.2 μA supply current, 30 mAh 
battery can continuously supply for 5 
years! 

Clare CPC1832 
IOUT = 50 μA

Solar: endless
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What 1 μA can do?

 Quite a bit—thanks to ultra low power IC design

 E.g., Swithed Capacitor Voltage Reference running on 1 µA:

I2 I1

Vout

C1

D1
Cload

Chold

OTA Opamp

Subregulated 
current generator

Switched capacitor BGR core Track-and-hold network & 
buffer amplifierClock generator

Φ1
Φ2
Φ3

Vdd_subreg

Trimming current 
sources

Switched capacitor 
network

Not designed for cold temperature...

S. Chen and B. J. Blalock, “Analog Circuits for Nano-Power Applications,” submitted to 
IEEE Transactions on Circuits and Systems II.
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Ultra Low Power Circuit Design

 Subthreshold (weak inversion) operation has been heavily 
utilized to accommodate bias current scaling to reduce power

 MOSFET in Weak Inversion:
• Transconductance efficiency (gm/ID) is at a maximum

• Speed/Watt or precision/Watt is maximized
• Low value of VDSAT (≈ 0.1V) required for saturation enables 

lower VDD

• Velocity saturation is non-existent in subthreshold designs
• Carrier heating effects that lead to noise & degradation of ID

are avoided
• Subthreshold exponential ID relation can be leveraged to 

implement analog computation systems 
• But… High gm/ID ratio and exponential dependency of ID on 

voltage and temperature results in high sensitivity to 
transistor mismatch (at least 2X worse) and temperature
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Challenges and Future Work

Ultra-Low Power Low Temperature Electronics

• Ultra low power vs. temperature
– Present design techniques  call for reduction of the  

supply voltage; however:
• MOSFET threshold voltages increase as temperature 

decreases.
• BJT (SiGe) Vbe increases as temperature decreases.

• This means for the same signal strength, we need 
larger supply voltage at lower temperatures.  

• Industry trend is supply voltage reduction: 5V to 
3.3V to 1.2V to 0.8V…



Curtis M. Grens, 04/09/09 27

Challenges and Future Work

Instrument Quality, Low Noise and Low Power Electronics

• Precision low noise electronics vs. power and temperature
– Precision electronics need large voltage headroom
– Precision electronics use high bias current to reduce device noise

• Combination of current and voltage means power…
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Digital Electronics-Synchronous Machines

• Field programmable Gate Arrays
– Reduced clock speed to avoid signal collision

– ACTEL FPGA’s can operate to -180C. Xilinx FPGA’s have cold start problem at T<-60C  (Use 
micro heater as a starter)

– SRAMs can operate to -180C

– DRAM (high density) do not operate at -180C due to readout circuits. Ben can fix this in a jiffy.

– Flash memory not tested for Lunar temp

Revolutionary ideas: 
Asynchronous computing
Adiabatic computing


